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1. INTRODUCTION 

The development, application and commercialization of cluster computer systems have escalated dramatically over 
the last several years. Driven by a range of applications that need relatively low-cost access to high performance 
computing systems, cluster computers have reached worldwide acceptance and use. A cluster system consists of 
commercial-off-the-shelf hardware coupled to (generally) open source software. These commodity personal 
computers are interconnected through commodity network switches and protocols to produce scalable computing 
systems usable in a wide range of applications. First developed by NASA Goddard Space Flight Center in the mid 
1990s, the initial Caltech/JPL development resulted in the Gordon Bell Prize for price-per-performance using the 
16-node machine HygZac in 1997 [I]. Currently the JPL High Performance Computing Group uses and maintains 
three generations of clusters including Hyglac. The available hardware resources include over 100 CPUs, over 
80Gbytes of RAM, and over 600Gbytes of disk space. The individual machines are connected via 100Mbit.h and 
2.0Gbit/s networks. 

Though the resources are relatively large, the system cost-for-performance allows these machines to be treated as 
‘mini-supercomputers’ by a relatively small group of users. Application codes are developed, optimized and put into 
production on the local resources. Being a distributed memory computer system, existing sequential applications are 
first parallelized while new applications are developed and debugged using a range of libraries and utilities. Indeed, 
the cluster systems provide a unique and convenient starting point to using even larger institutional parallel 
computing resources within JPL and NASA. 

A wide range of applications has been developed over the span of three generations of cluster hardware. Initial work 
concluded that the slower commodity networks used in a cluster computer (as compared to the high-performance 
network of a non-commodity parallel computer) do not generally slow execution times in parallel applications [2]. It 
was also seen that latency tolerant algorithms could be added to offset the slower networks in some of the less 
efficient applications. What followed was the development or porting of a range of applications that utilized the 
clusters’ resources. End benefits include greatly reduced application execution time in many cases, and the 
availability of large amounts of memory for larger problem sizes or greater fidelity in existing models. The 
applications can be characterized into the following classes: a) Science data processing: these applications typically 
exploit the available file systems and processors to speed data reduction; b) Physics-based modeling: these 
applications typically use large amounts of memory and can stress the available network latency and bandwidth; and 
c) Design environments: cluster computer resources can be integrated into larger software systems to enable fast 
tumaround of specific design or simulation components that otherwise slow the design cycle. 

The heavy use of clusters for a variety of applications requires the development of a cluster operation and 
maintenance infrastructure. This includes the use of commercial or open source tools and libraries. Key components 
involve the integration of message passing libraries (MPI) with a variety of compilers, queuing systems for effective 
resource utilization, utilities to monitor the health of the machine and the use of networked file systems attached to 
the cluster. 

The rest of this paper describes the cluster machines used for a wide variety of applications, and then discusses a 
image data processing application in more detail. Specifically, the process for creating Martian surface mosaic 
images from a collection of individual images shot from a rover or lander camera will be discussed. The mosaic 
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production and image pair correlation sofhare  was ported to a commodity cluster computer system as a proof-of- 
concept for near real-time processing of the downlink data. The application and algorithms, parallelization needed 
for use with the cluster and performance gains in using the clusters described above will be briefly outlined. 

2. COMPUTING ENVIRONMENT 

Three generations of cluster machines have been assembled within the High performance Computing Group at JPL. 
The first machine was built in 1997 and is named Hyglac. It consists of 16 Pentium-Pro 200MHz PCs, each with 
128 Mbytes of RAM and it uses 100Base-T Ethernet for communications. Each node contains a 2.5 GB disk. The 
nodes are interconnected by a 16-port Bay Networks 100Base-T Fast Ethernet switch. Nimrod, assembled in 1999, 
consists of 32 Pentium-I11 450MHz PCs, each with 512 Mbytes of RAM and it also uses lOOBaseT Ethemet for 
communications. An 8 GB disk is attached to each node. A 36 port 3-Com Superstack I1 100Base-T switch 
interconnects the nodes. The third generation machine, assembled in 2001, is named Pluto and consists of 31 
Pentium-I11 Dual-CPU 800MHz nodes (a total of 62 processors in all); each node has 2 GBytes of RAM. A 10 GB 
disk is attached to each node. The nodes are interconnected by the new 32 port Myricom 2000 networking hardware, 
capable of 240 Mbyte/s bi-directional bandwidth, and greatly reduced latency as compared to the 100Base-T Fast 
Ethemet switches. One big advantage of these cluster computers is their upgradability. We have for example 
increased the number of nodes on Pluto from the original 20 nodes to 32 nodes in the last half year. 

All of the above clusters run the Linux operating system and use MPI for message passing within the applications. A 
suite of compilers is available as well as math libraries and other associated software. Since the machines are not 
used by a very large set of users, scheduling software has not been a priority. The Portable Batch System (PBS) for 
queuing jobs is available on Pluto [3]. Besides the compute nodes listed for each machine, a front-end node is also 
attached to the switch and consists of identical (Pluto) or faster CPU hardware as the compute nodes with larger 
disks, an attached monitor, CD drive and other peripherals. 

3. DATA PROCESSING: MAPPING MARS 

The Mars Exploration Rovers (MER) to be launched in 2003 rely on detailed panoramic views for their operation. 
This includes: 

Determination of exact location 
Navigation 
Science target identification 
Mapping 

To prepare and test for MER operations, the Field Integrated Development and Operations (FIDO) rovers are being 
used. These FIDO rover cameras gather individual image frames at a resolution of 480x640 pixels and are stitched 
together into a larger mosaic. Before the images can be stitched they may have to be warped into the reference frame 
of the final mosaic because the orientation and the individual images change from one to the next, and because 
several final mosaics might be assembled from different viewpoints. The algorithm is such that for every pixel in the 
desired final mosaic a good corresponding point must be found in one or more of the original rover camera image 
frames. This process depends strongly on a good camera model. 

A sequence of software operates within a data pipeline to produce a range of products - both for science 
visualization and in a mission operations environment. The original image stereo pairs captured by the rover 
cameras are sent to the data processing center and placed into a database. The image pairs are then sent through the 
pipeline producing the image products. It was recognized that two key software components that slow the data cycle 
are the production of a mosaic from a large number of camera image frames, and the process of correlating pixels 
between an image stereo pair. The following sections summarize the results for these two algorithms; additional 
results for the mosaic software can be found in [4] along with results for a wide range of applications executing on 
cluster machines. 
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Figure 1 : Mosaic generation from individual image frames. The horizontal 
lines in the panorama (lower image) indicate the strips of the image 
distributed to the cluster processors. 

3.1 MOSAIC PRODUCTION FROM SETS OF IMAGES 

The original algorithm executes in about 90 minutes, calculating a complete mosaic from 123 images on a 450MHz 
Pentium 111 PC running Linux. It was desired to reduce this processing time by at least an order of magnitude. Initial 
algorithmic changes to the original software were first performed. Using MPI the modified mosaic software was 
parallelized and run on the clusters. The processing time was reduced to a range of 1.5 to 6 minutes depending on 
the specific image set and the processor speed used in the cluster. The images shown in Figure 1 were taken from a 
FIDO Rover field test in the beginning of May, 2001. The mosaic generation for this particular image (note that only 
about 1/4 of it is shown) took 3.3 minutes on 16 CPUs of a Nimrod-like cluster of 16 CPUs. 

The original mosaic algorithm was written for machines that have a limited amount of RAM available, thus 
restricting the number of individual images that can be kept in memory during the mosaic process. With about 256 
MB on a CPU one can safely read in all of the roughly 130 images and keep resident in RAM a copy of the final 
mosaic. The algorithm was changed to enable 
this with the aid of dynamic memory allocation. 
The original algorithm took about 90 minutes 
on a single 450MHz Pentium I11 CPU to 
compose 123 images into a single mosaic. The 
above algorithm changes as well as others 
result in a reduction of the required CPU time 
to about 48 minutes. Running the same 
algorithm and problem on an 800MHz CPU 
results in a time reduction to about 28 minutes 
(Figure 2). 

To exploit the parallelism available on a 
cluster, the parallel mosaic algorithm divides 
the targeted mosaic into N slices, where N is 
the number of CPUs (indicated by the 
horizontal lines in Figure 1). Once each CPU 
has completed its tasks, it reports the image 
slice to the manager CPU, which then patches 
the slices together into one image and saves it 
to disk. Results of the parallelization of the 
mosaic algorithm is shown for the 800MHz 
cluster and for the 450MHz cluster in Figure 2 .  
The dot-dashed line shows the ideal speed-up. 
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Figure 2: Timing examples for the assembly of 123 individual 
images into a single mosaic for two different clusters. 
Differences between the "800 MHz" and "800 MHz local 
data" indicate changes in how the input images are read from 
disk (see text). 



The actual timings follow a linear scaling with deviations from the ideal attributed to load balancing problems and 
data staging problems. The 800 MHz curve extends to a larger number of CPUs since the 800 MHz cluster has twice - _ _  
as many CPUs available. 

2 3 4 5 6 7  
CPU 

5 
h 

v) 
Q) c. z 4  
z 
F 2  

s 
- 3  

1 

0 
0 1 2 3 4 5 6 7  

CPU 
Figure 3: Timing analysis for runs on 8 CPUs on 
the 450MHz and 800MHz clusters. Times for set- 
up, image reading, image processing, 
communication and final image writing are shown. 

Figure 3 plots execution time broken into problem set-up, 
reading of the data, image processing, communication 
between CPUs and writing data to disk for two different 
clusters (450MHz and 800MHz). It is seen that most of the 
time is spent on the actual image processing. What is also 
noted is that different CPUs work on the problem for 
differing amounts of time. One solution to the load- 
balancing problem is a more careful analysis of the image 
data staging in the search algorithm portion of the 
processing. An approach that is more independent of the 
image sequencing and data staging can be a master-slave 
approach, where the work is dished out to the worker CPUs 
in smaller chunks in an asynchronous fashion. As some 
CPU's finish their chunk before others, they can start 
working on the next chunk. It is interesting to note that the 
load-balancing problem is, relatively speaking, smaller for 
the faster CPUs as compared to the slower CPUs. The 
apparently large communication cost on CPU 0 includes 
idle time waiting for data from CPUs 6 and 7. 

The parallel algorithm deteriorates strongly starting at 24 
CPUs. This can be attributed to data staging problems to all 
the CPUs. If the images are copied to the local disks on 
each node of the cluster (rather than residing on the front- 
end disk) the overall performance is significantly improved 
(crosses in Figure 2). The total processing time is reduced 
from 2.5 to 1.7 minutes. This comes at the expense of about 
7 minutes to copy the data to the local disks via the UNIX 
rcp process, though in an operational setting a different 
strategy for data staging may be available. This implies that 
if the algorithm is to be run on that many CPUs a different 
method and/or hardware must be found to move data to the 
local disks. 

Figure 4 shows data for the time spent in the set-up, the 
initial file reading, image processing, communication and 
final image writing for each individual CPU of Pluto. With 
39 CPUs, only about 1.5 minutes is spent on the actual 
image processing. The remaining 0.8 minutes are mostly 
spent on set-up and reading of the original images. The 
reading of all the input images by all the CPUs from the 
front-end disk leads to a dramatic bottleneck in the overall 
computation. 

The heavy disk load on the front-end can be reduced by copying all the images from the front-end machine's single 
disk to the local /tmp disks of the computation nodes. Figure 4 (bottom) shows the virtual elimination of the 
previously significant read time. Interestingly, we have also significantly reduced the time declared as set-up. We 
believe that this is due to the fact that during the set-up time all the input files are probed for their individual size and 
coordinates, which are needed to define the size of the final mosaic. This double access to the images became 
apparent to us in the analysis of this data. Additional improvements to the algorithm to only read a file and/or its 
header once are clearly possible. The copying of all the individual images to the local disks comes with a significant 
price in performance: an rcp shell command takes about 7 minutes to execute. Clearly that is not an efficient 
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Figure 4: Timing analysis on 39 CPUs running at 
800MHz. Top: images are all stored on the front 
end. Bottom: input images are distributed to local 
/tmp disks before the processing. 

solution. Possibly faster 1/0 hardware such as a RAID 
disk or a parallel file system might be solutions to this 
problem. 

Looking at the final performance data with the local data 
one can see again a load-balancing problem. However, 
squeezing out the last IO-20% performance by balancing 
this load and reducing the total time from 1.5 minutes to 
perhaps 1.3 minutes may prove to be laborious and not 
necessary as the platform this code will be run on during 
the Mars Exploration Rover mission is not completely 
defined at this time. 

3.2 CORRELATION OF STEREO-PAIR IMAGES 

A second step in the data processing pipeline that 
exhibited strong opportunities for parallelism is the 
algorithm for correlating stereo-pair images. This 
algorithm takes a pair of images from the rover stereo 
cameras and attempts to correlate pixels in the left and 
right images. The correlation is necessary for calculation 
of range and terrain maps. (Figure 5 shows a 
representative pair of images used in the FIDO tests.) The 
algorithm starts from a pre-defined seed point defining a 
pixel in the left image, and attempts to correlate this pixel 
and a set of surrounding pixels with those in the right 
image. A camera model that gives information relating 
the geometry of the two cameras is used to find the 
starting location in the right image given a pixel in the 
left image. Starting at the seed point the correlation 
process spirals outward until new pixels can no longer be 
correlated with each other. The algorithm then begins - - 

anew with a different seed point and continues attempting to correlate pixels that have not been previously 
processed. In between the main correlation stages, a pass is made along the areas not previously correlated to 
complete the correlation in those sections of the image pair. This stage is referred to as filling the gores in the image. 
Generally not all pixels can be correlated, due to the different view angles of the two cameras. For example in 
Figure 5 the left eye sees an area of ground between the lower ramp and the left of the rover that the right eye does 

Figure 5. Left and right stereo pair used in correlation example. In this example the lines indicate subframes of 
the workload for the left image distributed to 12 processors of the cluster. 



not see at all. 
To exploit the parallelism available on a cluster, the stereo-pair images were divided into subframes depending on 
the number of processors in use. Figure 5 shows a decomposition for 12 processors-in general the decomposition 
results in anywhere from equal numbers of column and row subframes to a ratio of 3: 1 (co1umns:rows) subframes 
for some numbers of processors. E.g., a ratio of 12:4 for 48 processors in use. Though each processor holds the 
complete pair of images, it is the computational work in the left image that is divided among the processors as 
indicated by the subframes shown in the left image of Figure 5 .  For each subframe of the left image in a processor, a 
seed point is generated for the left frame and the algorithm for correlating pixels between images begins. Since the 
pixel in the left frame can generally correlate to a pixel located anywhere in the right frame the whole right image is 
available to to the Correlation algorithm. Search window size and correlation window size are input parameters to 
the correlator. The location of a seed point is chosen randomly in each subframe with the number of seed point 
passes in the algorithm a variable at runtime. Because the seed point and the sequence of operations in the parallel 
correlation algorithm is different than those in the sequential algorithm, it is expected that both the number of pixels 
correlated as well as the quality of 
correlation in the images will be 
differ slightly depending on the 
number of processors in use. 

Figure 6 is a plot of the scalability 
and number of pixels correlated for 
the correlation algorithm executing 
on Pluto. The timing at one 
processor indicates the original 
algorithm and seed points on one 
processor of the cluster, while the 
additional points show the timing 
and number of points correlated for 
the parallel algorithm and random 
seed point generator. The overall 
execution time was reduced from 
over 38 minutes on I processor to 
1.6 minutes on 36 processors. The 
number of  pixels considered 
correlated varied slightly as the 
number of processors in use was 
increased but stayed within 5% of 
the number correlated in the original 
sequential algorithm. This number 
could be increased slightly by 
increasing the number of seed point 
passes in the algorithm. The quality 
and number of pixels correlated in 
the images by the parallel algorithm 
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Figure 6. Scalability of stereo-pair correlation algorithm on cluster 
Pluto. Axis on left indicates execution time for the correlation algorithm 
while axis on right indicates the total number of pixels correlated in the 
image pair. 

as referenced to the original sequential algorithm is currently being examined. 

Figure 7 is a plot of the timing and number of pixels correlated per processor for 36 processors on Pluto. The 
timings are broken into the main and gore portions of the algorithm as described above. The number of pixels 
correlated as well as the time per processor is seen to vary across the processors. It is clear that a refined version of 
the parallel algorithm can be developed that balances the workload across processors. As in the mosaic generation 
algorithm, it is unclear if the savings of less than a minute of execution time is necessary until further requirements 
are defined. 

Figure 8 shows an overlay of the left camera image shown in Figure 5 with a raster of 36 subdivisions corresponding 
to the data in Figure 7. The yellow colors correspond to the original image, the blue overlay indicates a “successful” 
correlation as returned by the serial code. Almost all the area of the image that is worked on by CPUs 3 1 through 36 
is not even seen in the right image. That is why a load balance problem is evident in Figure 7. It is also interesting 



to note that the segment indicated by CPU 34 does show "successful" correlation on the ramp, which is not even 
shown in the right image. We are currently implementing a left-right and right-left correlation verification algorithm 
that will eliminate such dramatic errors [ 5 ] .  

Timing and Numbers of Pixels Carelated per Processa 

Processor 
Figure 7. Timing and number of pixels correlated per processor for 36 processors of Pluto. The timing is broken 
into the main and 'gore' portion of the algorithms as described in the text. All other portions of the code result in 
less than a second of execution time. The number of pixels correlated on each processor is indicated on the right 

serial code correlation mask which indicates successfully correlated pixels. 



4. CONCLUSION 

This paper has summarized the use and performance of cluster computers for processing of stereo-pair camera 
images to produce science data products and images used for mission operations. The mosaic production software 
and the correlation software was ported to the cluster computer environment and executed for representative images 
used in recent field tests to determine performance and fidelity of processing. Due to the inherent parallelism of the 
algorithms, the reduction of processing time is large. The mosaic production was reduced from about 28 minutes to 
under 2 minutes using the cluster while the correlation algorithm was reduced from 38 minutes to under 2 minutes. 
The final mosaic image produced is identical in the original sequential and parallel environment, while the 
correlations produced in the two environments differ slightly due to variations in the processing order inherent in the 
parallel algorithm. These differences are currently being examined and will be quantified [5]. 
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